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a b s t r a c t 

This study reports the design and implementation of a pattern recognition algorithm aimed to classify 

electroencephalographic (EEG) signals based on a class of dynamic neural networks (NN) described by 

time delay differential equations (TDNN). This kind of NN introduces the signal windowing process used 

in different pattern classification methods. The development of the classifier included a new set of learn- 

ing laws that considered the impact of delayed information on the classifier structure. Both, the training 

and the validation processes were completely designed and evaluated in this study. The training method 

for this kind of NN was obtained by applying the Lyapunov theory stability analysis. The accuracy of train- 

ing process was characterized in terms of the number of delays. A parallel structure (similar to an associa- 

tive memory) with fixed (obtained after training) weights was used to execute the validation stage. Two 

methods were considered to validate the pattern classification method: a generalization-regularization 

and the k -fold cross validation processes ( k = 5). Two different classes were considered: normal EEG 

and patients with previous confirmed neurological diagnosis. The first one contains the EEG signals from 

100 healthy patients while the second contains information of epileptic seizures from the same num- 

ber of patients. The pattern classification algorithm achieved a correct classification percentage of 92.12% 

using the information of the entire database. In comparison with similar pattern classification methods 

that considered the same database, the proposed CNN proved to achieve the same or even better correct 

classification results without pre-treating the EEG raw signal. This new type of classifier working in con- 

tinuous time but using the delayed information of the input seems to be a reliable option to develop an 

accurate classification of windowed EEG signals. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

There are various events that occur and influence the elec-

roencephalogram (EEG) waveform. These events can be usual

ctivities such as listening music ( Sawata, Ogata, & Haseyama,

015 ), sleeping ( Koley & Dey, 2012 ), smelling particular odors

 Byung-Chan et al., 2003 ), using drugs ( Saletu, Anderer, SaletuZyh-

arz, Arnold, & Pascual-Marqui, 2002 ), suffering mental disorders

 Manchanda et al., 2014 ), detecting mood ( Yu et al., 2011 ), among

thers. EEG signal has been also used to detect different events

ccurring in certain regions deep in the brain. In particular, epilep-

ic seizures have been studied because they can cause a vari-

ty of temporal modifications in perception and behavior. Dur-
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ng the epileptic event, EEG signal apparently becomes rhyth-

ic even preceding the first detectable behavioral change ( Sierra-

arcos, Scheuer, & Rosseti, 2015 ). Automatic and reliable detection

t the earliest possible moment, can be used in characterizing the

pileptic centers as well as detecting if EEG rhythmic signals are

ruly coming from epileptic events or they are produced by a dif-

erent physiological or anatomical disorder. Long periods of time

nd exhaustive signal analysis must be applied to detect epileptic

haracteristic waveform in EEG recordings ( Garces Correa, Orosco,

iez, & Laciar, 2015 ). Therefore, several attempts have been made

o develop automatic detection systems of particular EEG wave-

orm ( Ang & Chin, 2012; Hramov, Koronovskii, Makarov, Pavlov, &

itnikova, 2015 ). 

Diverse studies established certain characteristics in EEG

ecords that can be used to classify them. Due to the fact that EEG

ignals exhibit complex behavior ( Stefanidis, Anogiannakis, evan-

elou, & Poulus, 2015 ) with strong non-linear and dynamic proper-

ies ( Subha, Joseph, Acharya, & MinLim, 2008 ), several researchers

http://dx.doi.org/10.1016/j.eswa.2016.08.020
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have developed algorithms that automatically detect events as a

way to avoid manual sorting of EEG signals. Indeed, these algo-

rithms have been developed to reveal time-locked event related

modulations of the EEG signal or frequency specific elements. All

of these algorithms tried to estimate within each EEG epoch, the

dependence of signal amplitude with respect to time and fre-

quency. Therefore, they have used the main characteristics of dif-

ferent signal processing and pattern classification methods that

cover a wide range of complexities, from the simple population

vector algorithm ( Cinar & Sahin, 2013 ), optimal linear estimator

( Ang & Chin, 2012 ), various versions of Bayesian decoders ( Li, Do-

herty, Lebedev, & Nicolelis, 2011 ) and different arrangements of the

so-called artificial neural networks (NN). Nevertheless, EEG classi-

fication techniques have attained limited success when character-

izing the brain information, because they must be used in specific

applications, and no one has achieved total successful results due

to diverse factors ( Millan & Mourino, 2003 ). First of all, the pro-

posed algorithms have to deal with great amounts of data. Besides,

the processed information have lots of noise, along with the fact

that these methods need to consider the interaction between ac-

tual neurons on the cortex yielding to analyze it as an intercon-

nected system ( Daly, 2013 ). Also, the brain outcomes can change

dramatically from one individual to another even under the same

circumstances and finally most of the proposed algorithms did not

quantify all of the information available in the EEG recordings. In-

deed, the majority of these techniques applied complicated pre-

treatments on the signals to obtain better classification results. 

Simultaneous time and frequency analysis of EEG signals may

produce better results. This kind of analysis has been done us-

ing the Wavelet transform technique for example ( Faust, Acharya,

Adeli, & Adeli, 2015 ). An alternative method uses the concept of

windowing function. This procedure is used to obtain the extrac-

tion of both time and frequency characteristics in the EEG sig-

nal. In instance, the so-called windowed Fourier transformation

has been widely considered to analyze and classify EEG signals

( Roshan et al., 2012 ). The same methodology has been used when

the Fourier transformation is substituted by the wavelet transform.

A different method uses the so-called short time Fourier transfor-

mation (or Gabor) ( Kumar, Kanhangad, & Pachori, 2015 ). 

Several factors must be defined when windowing function is

used in EEG analysis. For example, when a windowing function is

applied to the time-domain signal, the spectral properties of the

signal are conditioned a priory. In addition, defining the window

characteristics may represent a difficult process. As a matter of

fact, this problem continues as a relevant researching problem. 

The windowing effect on EEG pattern recognition has been doc-

umented in different studies. In particular, this effect has been

evaluated when machine learning methods have been used to ob-

tain the EEG signal classification (convolution NN, support vector

machines, genetic algorithms) ( Hwang, Kim, Choi, & Im, 2013 ). Just

recently, classification algorithms that maintains memory of previ-

ous inputs have started to appear. This kind of methods can learn

not only by the EEG signal amplitude but also by its variation

through time, that is, the temporal dependencies between consec-

utive samples. In this study, a different approach based on dynamic

NN is proposed where the information within the window is con-

sidered as delayed versions of the input signal. 

This study is aimed to develop an EEG signal classifier based

on TDNN. This particular structure of NN was proposed to consider

the effect of delayed information in the input signal. This scheme

served to consider the usual windowing process that appears when

the pattern classifier must consider a period of the signal. Training

and validations processes were developed in this study using the

so-called Lyapunov stability theory. This solution represents a new

and different attempt to use continuous time delay NN as a key

tool in the pattern recognition framework. Moreover, the paramet-
ic adjustment method used to regulate the weights values in the

N was formally obtained without using heuristic information. 

In order to introduce the concept of TDNN, the following sec-

ion describes briefly their main characteristics. 

. Time-delay dynamic NN 

Time-delays are usually considered as sources of instability in

ynamic systems, however, for some particular cases, the pres-

nce of delays yields to stabilizing effects ( Emilia, 2014 ). Time-

elays are also common in biological and chemical systems. A

ime-delay input signal appears in models of real systems due to

ifferent reasons. Usually, delays are forced by the physical nature

f the system ( Hale, 1977 ). Transport processes (like in chemical

r pneumatic systems) or computational delay (e.g. in digital con-

rollers or communication networks ( Kruszewski, Jiang, Fridman,

ichard, & Toguyeni, 2012 )) are regular sources of delayed input

ignal.Delays can also be present during an EEG medical test be-

ausethe recorded signal at each electrode is in fact showing the

ummation of the electrophysiological variance of the brain area

loser to the electrode and a lagged version of variances from other

ubcortical regions ( Sargolzaei et al., 2015 ). Input delay can also be

ntroduced artificially to include the sampling effect in mathemat-

cal models (see, for example Fridman, Seuret, and Richard, 2004 ;

olyakov, 2012 ). Ignoring the time-delays in biopotential (e.g. EEG)

ields to conclusions that do not contain the complete information

f the system under study ( Mier-y Terán-Romero, Silber, & Hatzi-

anikatis, 2010 ). 

In recent studies ( Arik, 20 0 0 ), ( Cao, 20 0 0 ), ( Joy, 20 0 0 ) two

inds of TDNN are recognized, according to how the delay affect

heir stability. One is referred to as delay independent stability

nd the other delay dependent stability ( Liaoa, Chenb, & Sanchez,

002 ). For this paper, we deal with the delay dependent stability

ase. Nowadays, the results regarding time-delay systems only con-

ider the stability of the TDNN. As a matter of the fact, TDNN has

 primary objective to work with sequential data such as the col-

ected in EEG records. This characteristic allows to this particular

lass of artificial NN to classify patterns or features independent of

ime-shift. Indeed, the specific movement of an epileptic event in

ime is a relevant cue to determine the possible source of the event

s well as the nature of EEG rhythmic patterns. This pair of char-

cteristics can be used to classify physiological phenomena more

han isolated events in the EEG signal. Then, TDNN should have

he ability to represent relationships between events in time. 

A TDNN may serve as a potential pattern classifier, if it can

e represented as a non-parametric identifier system. This require-

ent arises if we consider that a pattern classifier can be under-

tood as a uncertain even unknown nonlinear system that uses

he EEG signal as input (with the corresponding delayed infor-

ation) while the output is a label or number characterizing the

lass where the particular windowed EEG waveform belongs. The

uestion regarding how to define the adequate number of delays

hat must be considered in the TDNN structure is still a matter

f research. However, the non-parametric identifier problem has

een poorly explored ( Ge, Srinivasan, & Krishnan, 2007 ). In this

ense, the remarkable properties of time-delay stability analysis

ave been wasted for solving the problem of the non-parametric

dentifier based on Continuous NN or CNN. 

. Pattern classifier problem statement applied on windowed 

EG 

As mentioned in the previous sections, different classifiers have

een applied to categorize EEG. Many of them are based on static

N. Recently, CNN have emerged as powerful tools to extent the
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Fig. 1. Flow chart describing the entire process to implement TDNN as EEG signal 

classifier. 
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lassification capabilities of NN. To the authors’ knowledge, TDNN

ased on CNN have never been used as EEG pattern classifier. 

The flow chart showed in Fig. 1 describes all the stages used

n this study. The left-hand side describes the training step whit

he delayed input produced by the delay operator q −1 . The result

f this process are the weights fixed at the validation stage. Within

he validation stage, two different procedures yielded to the final

lassification: generalization-validation and k -fold cross validation.

he final result of the entire process is the specific class for each

ested EEG signal. 

.1. TDNN pattern classifier applied on windowed EEG signals 

Despite the class of NN used to perform the signal classifica-

ion, there is a general method that must be applied including the

tages of training, validation and testing. The first stage on the EEG

ignal classification requires to define a set of targets associated

o the specific class of EEG. Therefore, if the EEG signal is consid-

red as the input number j in the class l , ( u j, l to the NN), then the

utput, namely x l corresponds to the specific class (among the L

vailable classes) where the signal belongs. Then, the state x l cor-

esponds with the concept of target. For this study, this target was

epresented as a time dependent sigmoid function described by: 

 

l (t) = 

a l 

1 + e −c(t−d) 
(1) 

here the variable x l represents the target that belongs to class

 ( l = 1 , . . . , L ). The positive constant a l was modified accordingly

o the class where the particular EEG signal belongs. This constant

erved to modify the amplitude of the sigmoid function and then

o characterize each class. The positive constant c was elected in

rder to regulate the slope of the sigmoid function. Also, the con-

tant d was selected to adjust the transition of sigmoid function

ithin the window. One may notice that different functions could

e selected to define the characteristic of a class but according to

he Cybenko’s seminal paper ( Cybenko, 1989 ), this selection (sig-

oid function) seems to be more natural. 
The training process consisted of comparing the output of the

N with the target x l ( t ) when they both are affected by the same

EG signal. This process seems to be similar to the classical super-

ised learning. Then, the evaluation of the NN with a percentage

f all EGG signals u j, l ( t ) that represents its component number j ( j

 [1, N l ], 
∑ L 

l=1 N l = N , where N is the number of signals of the en-

ire database selected to complete the training process). When the

EG signal u j+1 ,l (v ) is executed, the set of weights produced by

his training step is used a part of the NN considered in the next

tep. When j = N l then the weights characterizing the EEG signals

elonging to class l are obtained. 

Therefore, when the whole set of N signals selected to perform

he training process has been tested, L different sets of weights

 

∗,l 
N l 

have been produced. If the training process has been correctly

xecuted, the aforementioned weights are reused as part of a set

f L non-adjustable NN with the same structure to the one used

uring the training. This part of the process is named the valida-

ion stage. Based on the well-known generalization-regularization

nd the k -cross validation methods, a percentage of the whole set

f EEG signals u j, l ( t ) is used to evaluate the output of the set of

 NN with the corresponding set of W 

∗,l 
N l 

. At this part of the vali-

ation, all the L NN are evaluated in parallel. The output of each

rained NN named ˆ x l is compared with the corresponding value x l .

he mean square error ˆ x l − x l is calculated over the period of time

orresponding to the length of EEG signal or to the length of the

indow, that is 

 

T,l = T −1 

T ∫ 
t=0 

(
ˆ x l (t | W 

∗,l 
N l 

) − x l (t) 
)2 

dt 

here ˆ x l (t | W 

∗,l 
N l 

) corresponds to the output of the correspond-

ng NN with fixed weights W 

∗,l 
N l 

. One must notice that the length

f all the testing signals was kept constant. The minimum value

among the L possible results) of this set of mean square (LMS)

rrors (moving and varying) was the indicator of the class where

he EEG signal tested at that moment belongs. The validation state

onsidered that all EEG signals used in this part of the analysis

ere previously used in the training stage. However, during the

esting stage, a set of signals that have never been presented to

he classifier was considered. 

In summary, the classifier structure proposed for this work

as developed according to the following strategy: The first stage

as the training process; here the characteristic weights for the

NN were determined for each class. In the next stage, a parallel

tructure was developed, this structure was based on several CNN

ith their corresponding fixed weights for each class. This paral-

el structure uses an EEG signal as input. The signal is evaluated in

arallel by the structure and from each CNN in the parallel struc-

ure, the LMS error was obtained. Then, the one with the smallest

erformance index J T, l was the one corresponding to the selected

lass. 

The class of stable time-delay system considered is formally de-

cribed as follows: 

d 

dt 
x ( t ) = f ( x ( t ) , u (t) , u (t − h ) , . . . , u ( t − ph ) ) + ξ ( x ( t ) , t ) 

x t 0 (θ ) = x ( t 0 + θ ) = ϕ ( θ ) 

∀ θ ∈ [ −ph, 0 ] p ∈ Z 

+ (2) 

his dynamic representations relates the EEG signals as inputs

( u (t) , u (t − h ) , . . . , u ( t − ph ) ) with the corresponding sigmoid sig- 

al x . Notice that despite the delay value, the input signal is

ounded as ‖ u (t − ih ) ‖ 2 ≤ u + , i = 0 , 1 , . . . , p. The continuous sig-

al x ∈ R is the state of the time-delay system (that corresponds

o the class where the EEG input signal corresponds) with | x | < ∞ ,

 t ≥ 0. One must notice that the source of delay is coming from
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Fig. 2. TDNN structure considered in both stages: training and validation. 
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the input signal u ∈ R 

m which now represents the EEG signal at

the current time as well as its delayed information. The function f

represents the uncertain nonlinear function connecting the state

(the class) of the plant with the delayed input signal u ( t − ih ) ,

i = 0 , . . . , p. Indeed, this uncertain function represents the pattern

classifier because in its structure, it is hidden the association be-

tween the input and the class. The delay value h is known and

constant, h ∈ R + ∀ t ≥ 0 . 

System uncertainties and perturbations are described by the

nonlinear unknown function ξ ( x, t ) : R 

2 → R and satisfies 

| ξ ( x, t ) | 2 ≤ ϒ ∀ t ≥ 0 

(3)

where ϒ ∈ R 

+ . 

3.1.1. Neural network approximation for the time-delay signal 

classifier 

Based on the NN approximation theory, the time delay system

presented in (2) can be represented as the following TDNN ( Liao,

Chen, & Sanchez, 2002; Poznyak, Sánchez, & Yu, 2001 ): 

d 

dt 
x ( t ) = A d x ( t ) + 

[
W 

∗
d 1 

]
 
ψ d 1 ( x d ( t ) ) + 

[
W 

∗
d 2 

]
 
ψ d 2 ( x d (t) ) u (t) 

+ 

p ∑ 

i =1 

[
W 

i 
d 2 

(t) 
]
 

ψ 

i 
d 2 

( x d (t) ) u (t − ih ) 

+ ̃

 f ( x d (t) , u (t) , u (t − h ) , . . . , u ( t − ph ) ) + ξ (x ( t ) , t) (4)

The basic structure of the TDNN considered in this study is de-

picted in Fig. 2 . The structure shows the state continuous feed-

back modulated by weights W ( d 1 ) 
i as well as the influence of non-

delayed and delayed input information that are regulated by the

weights W ( d 2 ) and W 

i 
d 2 

respectively. The activation functions used

in the TDNN structure are also represented in the same figure. 

The approximation based on TDNN tries to obtain a non-

parametric approach to determine a feasible description of

the EEG signal classifier. The structure of the TDNN, the
calar A d ∈ R , W 

∗
d 1 

∈ R 

l 1 , W 

∗
d 2 

∈ R 

l 2 , W 

i, ∗
d 2 

∈ R 

l 2 are constant matri-

es used to approximate the EEG signals. The set of matrices

 

∗
d 1 

, W 

∗
d 2 

, W 

i 
d 2 

are unknown but all their components are bounded

 W 

∗
d 1 

�1 [ W 

∗
d 1 

] 
 ≤ V + 
1 

, W 

∗
d 2 

�2 [ W 

∗
d 2 

] 
 ≤ V + 
2 

, W 

i 
d 2 

[ W 

i 
d 2 

] 
 ≤ V + ,i 
2 

with

 

+ 
1 

, V + 
2 

, V + ,i 
2 

some positive matrices of appropriate dimensions).

he modeling error term 

˜ f is assumed to be bounded as
˜ f ( x (t) , u (t) , u (t − h ) , . . . , u ( t − ph ) ) 

∣∣ ≤ ˜ f 0 with 

˜ f 0 a positive scalar.

The vector functions ψ d 1 
: R → R 

l 1 and ψ d 2 
: R → R 

l 2 ×m , ψ 

i 
d 2 

:

 → R 

l 2 ×m define the set of activation functions used to design the

eural network structure. The components of the activation func-

ions were proposed as sigmoid functions, that is 

ψ d 1 ( x ) = 

a d 1 , j 1 

1 + e −( c d 1 , j 1 
x ) 

∣∣∣∣
j 1 =1 , ... ,l 1 

ψ d 2 ( x ) = 

a d 2 , j 2 

1 + e −( c d 2 , j 2 
x ) 

∣∣∣∣
j 2 =1 , ... ,l 2 

 

i 
d 2 

( x ) = 

a i 
d 2 , j i 

2 

1 + e 
−
(

c i 
d 2 , j i 

2 

x 

)
∣∣∣∣∣∣

j i 
2 
=1 , ... ,l 2 

.1.2. Classifier structure 

The classifier based on NN is proposed following the classi-

al strategy used to design adaptive parameter identification al-

orithms ( Poznyak et al., 2001 ); that is, considering a copy of

he structural approximation for uncertain nonlinear systems with

ime-delays defined in (4) . Consequently, the approximate classifier

ased on NN has the following structure. 

d 

dt 
ˆ x ( t ) = A d ̂  x ( t ) + 

[
W d 1 ( t ) 

]
 
ψ d 1 

(
ˆ x d ( t ) 

)
+ 

[
W d 2 (t) 

]
 
ψ d 2 

(
ˆ x d (t) 

)
u (t)

+ 

p ∑ 

i =1 

[
W 

i 
d 2 

( t ) 
]
 

ψ 

i 
d 2 

(
ˆ x d (t) 

)
u (t − ih ) 

ˆ x (t) = ̂

 x t 0 , ∀ t ∈ [ −ph, 0 ] p ∈ Z 

+ ˆ x t 0 ∈ C [ −ph, 0 ] (5)

here A d ∈ R , W d 1 
∈ R 

l 1 , W d 2 
∈ R 

l 2 , W 

i 
d 2 

∈ R 

l 2 . Here ˆ x defines the

dentifier state that tries to approximate the corresponding sig-

oid signal corresponding to each class. The vectors W d 1 
( ·) , W d 2 

( ·)
nd W 

i 
d 2 

( ·) are adaptive parameters that should be adjusted to ap-

roximate the input-output behavior of the TDNN presented in (2) .

he scalar A d and functions ψ d 1 
( ·) , ψ d 2 

( ·) and ψ 

i 
d 2 

( ·) have the

ame meaning to the ones introduced in the previous section. 

The learning laws for the classifier (5) are defined by 

d 

dt 
W d 1 (t) = −k −1 

d 1 
e 2 k d t P �d ( t ) ψ 


 
d 1 

(
ˆ x d ( t ) 

)
−α ˜ W 

tr 
d 1 

( t ) −
(
1 + �W d 1 

)
˜ W 

tr 
d 1 

( t ) (6)

here �W d 1 
is a small positive scalar while k d 1 and k d are positive

ains that shall be adjusted. In the same manner W 

i 
d 2 

( t ) associated

o the inputs are described by 

d 

dt 
W 

i 
d 2 

( t ) = −
t−( i −1 ) h ∫ 
τ= t−ih 

αe 2 k d ( τ ) ˜ W 

tr.i 
d 2 

( t ) ̄�+ ,i 
d 

( τ ) dτ

−α ˜ W 

tr,i 
d 2 

( t ) + 2 e 2 k d t P �
 ( t ) ψ 

i 
d 2 

(
ˆ x d (t) 

)
u (t − ih )) 

−
(
1 + �W d 2 

)
˜ W 

tr,i 
d 2 

( t ) − �i ˜ W 

tr,i 
d 2 

( t ) (e 2 k d t i +1 �̄ i 
d 2 

( t i +1 ) 

×
[
�̄ i 

d 2 
( t i +1 ) 

]
 − e 2 k d t i �̄ i 
d 2 

( t i ) 
[
�̄ i 

d 2 
( t i ) ) 

]
 

�i = 

⎛ 

⎝ 2 k d 2 + 

t i ∫ 
τ= t i −1 

e 2 k d ( τ ) ˜ �+ ,i 
d 

( τ ) dτ

⎞ 

⎠ 

−1 
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[
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, �̄ i 
d 2 

( t ) = ψ 

i 
d 2 

(
ˆ x d ( t ) 

)
u ( t ) , 

�W d 2 
∈ R 

+ , k d 2 ∈ R 

+ (t i = t − ( i − 1 ) h ) (7) 

.2. On-line training scheme using the continuous version of least 

ean square method for TDNN 

The following theorem is used to obtain the evolution of the

eights in the TDNN. 

heorem 1. Let consider the time-delay uncertain system (2) with a

nown number of fixed delays. Suppose that perturbations and non-

odeled system ξ ( x ( t ), t ) affecting the classifier of EEG signals ful-

lls (3) . If there exist positive scalars �d k 
> 0 , �d k 

∈ R , d k = 1 , 2

nd a positive scalar α > 0 such that the following Riccati equation

 d (h, P, Q, R, α) = 0 with 

 d (h, P, Q, R, α) = 2 P ̂  A d + P 2 R + Q 

ˆ 
 d = A d + 

(
1 + 

α

2 

)
 = V 

+ 
1 + V 

+ 
2 + 

p ∑ 

i =1 

V 

+ ,i 
2 

+ �1 + �2 

 = 

(
λmax 

(
�−1 

1 

)
h 1 + pu 

+ λmax 

(
�−1 

2 

)
h 2 

)
 1 , h 2 ∈ R 

+ (8) 

as at least one positive definite solution P > 0, P ∈ R , then the clas-

ification error � = x − ˆ x converges exponentially to a region charac-

erized by 

:= 

λmax 

(
�−1 

1 

)
λmax 

(
� f 

) ˜ f 0 + 

λmax 

(
�−1 

2 

)
λmax 

(
�ξ

) ϒ

hat is 

lim 

→∞ 

e 2 kt 
(
α�
 ( t ) P �( t ) − β

)
= 0 (9) 

roof. The learning method used to adjust the parameters in-

luded in the TDNN proposed in this study can be obtained using

he so-called Lyapunov stability analysis. If the full-time derivative

as applied to the previous equation, and using (2) and (5) , the

ollowing delayed differential equation is obtained: 

d 

dt 
�( t ) = A �( t ) + [ W 

∗
1 ] 


 (ψ 1 ( x ( t ) ) - ψ 1 

(
ˆ x ( t ) 

))
+ 

[
˜ W 1 ( t ) 

]
 
ψ 1 ( ̂  x (t)) + 

[
˜ W 2 ( t ) 

]
 
ψ 2 ( ̂  x (t)) u (t) 

p 
 

i =1 

[
W 

i 
2 ( t ) 

]
 ˜ ψ 

i 
2 

(
ˆ x (t) , x (t) 

)
u (t − ih ) 

+ ̃

 f ( x ( t ) , u ( t ) , u ( t − h ) , . . . , u ( t − ph ) ) + ξ ( x ( t ) ) 

y using the so-called Lyapunov–Krasovskii functional, we con-

tructed the learning algorithms. This kind of functionals has been

idely used to prove the existence of an equilibrium point for time

elay dynamic systems. For this paper, the candidate of Lyapunov–

rasovskii functional was designed as follows 

 

(
t, �, ˜ W 1 , ˜ W 

i 
2 

)
= e 2 k d t P �2 + k d 1 

˜ W 


 
1 

˜ W 1 + k d 2 

[
˜ W 2 

]
 
˜ W 2 ( t ) 

+ 

p ∑ 

i =1 

k 2 ,i �
i 
2 + 

p ∑ 

i =1 

t−( i −1 ) h ∫ 
τ= t−ih 

e 2 k d ( τ ) 
([

˜ �2 ( τ ) 
]
 

�2 
˜ � i 

2 ( τ ) 

)
dτ

i 
2 = 

[
W 

i 
2 ( t ) 

]
 
W 

i 
2 ( t ) (10) 
he full time derivative with respect to time of this Lyapunov–

rasovskii functional provides the following differential equation 

d 

dt 
V ( t ) = 2 ke 2 k d t P �2 ( t ) +2 e 2 k d t �( t ) P 

d 

dt 
�( t ) +2 k d 1 

˜ W 


 
1 ( t ) 

d 

dt 
˜ W 1 ( t

+2 k d 2 
˜ W 


 
2 ( t ) 

d 

dt 
˜ W 2 ( t ) + 2 

p ∑ 

i =1 

k 2 ,i d�i 
2 (t) 

+ 

p ∑ 

i =1 

e 2 k d t i 
(

˜ � i 
2 ( t i ) 


 �i 
2 (t) ̃  � i 

2 ( t i ) 
)

−
p ∑ 

i =1 

e 2 k d t i +1 

(
˜ � i 

2 ( t i +1 ) 
)
 

�i 
2 (t) ̃  � i 

2 ( t i +1 ) 

+2 

p ∑ 

i =1 

t i ∫ 
τ= t i +1 

e 2 k d ( τ ) 
(

˜ � i 
2 ( τ ) 

)
 ˜ � i 
2 ( τ ) d �i 

2 (t) d τ

d�i 
2 (t) : = 

[
W 

i 
2 ( t ) 

]
 d 
dt 

W 

i 
2 ( t ) (11

he second term in the previous differential equation is analyzed

y means of the well-known matrix inequality XY 
 + YX 


 ≤
 �X 


 + Y �−1 Y 
 valid for any X, Y ∈ R 

r×s and any 0 < � = �
 

 R 

s × s . Then, using this last inequality a number of times, one has

a) 2 e 2 k d t �PA � = 2 e 2 k d t PA �2 ( t ) 

b) 2 e 2 k d t �( t ) P [ W 

∗
1 ] 


 (ψ 1 ( x ( t ) ) − ψ 1 

(
ˆ x ( t ) 

))
≤ e 2 k d t �2 ( t ) (P 2 [ W 

∗
1 ] 


 �a W 

∗
1 + 

(
λmax 

(
�−1 

a 

)
h 1 

)
) 

c) 

p ∑ 

i =1 

2 e 2 k d t �( t ) P 
[
W 

∗,i 
2 

]
 ˜ ψ 

i 
2 

(
x (t) , ̂  x (t) 

)
u (t − ih ) 

≤
p ∑ 

i =1 

2 e 2 k d t �2 ( t ) P 2 
[
W 

∗i 
2 

]
 
�b W 

∗i 
2 

+ 

p ∑ 

i =1 

2 e 2 k d t u 

+ λmax 

(
�−1 

b 

)
h 2 �

2 ( t ) 

d) 2 e 2 k d t �( t ) P ˜ f ( x ( t ) , u ( t ) , u ( t - h ) , . . . , u ( t - ph ) ) 

≤ e 2 k d t 

( 

�2 ( t ) P 2 �1 + 

λmax 

(
�−1 

1 

)
λmax 

(
� f 

) ˜ f 0 

) 

nd finally 

e) 2 e 2 k d t �( t ) P ξ ( t ) ≤ e 2 k d t �2 ( t ) P 2 �2 + e 2 k d t 
λmax 

(
�−1 

2 

)
λmax 

(
�ξ

) ϒ

ringing all these results together and substitute them in the time

erivative of Lyapunov–Krasovskii functional (11) , one gets 

d 

dt 
V ( t ) ≤ e 2 k d t 2�2 ( t ) P ( A + 1 ) + �2 ( t ) P 2 R + �2 ( t ) Q 

+2 k d 1 
˜ W 


 
1 ( t ) 

d 

dt 
˜ W 1 ( t ) + 2 e 2 k d t �( t ) P 

[
˜ W 1 ( t ) 

]
 
ψ 1 ( ̂  x (t)) 

+ k d 2 

[
˜ W 2 ( t ) 

]
 d 
dt 

˜ W 2 ( t ) + 2 

p ∑ 

i =1 

k 2 ,i d�i 
2 (t) 

+2 e 2 k d t �( t ) P 
[

˜ W 2 ( t ) 
]
 

ψ 2 

(
ˆ x (t) 

)
u (t) 

+ 

p ∑ 

i =1 

e 2 k d t i 
[

˜ � i 
2 t 


 
i 

]
�i 

2 (t) ̃  � i 
2 ( t i ) 
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Fig. 3. EEG signal windowing process to fed the TDNN. 
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−
p ∑ 

i =1 

e 2 k d t i +1 

[
˜ � i 

2 ( t i +1 ) 
]
 

�i 
2 (t) ̃  � i 

2 ( t i +1 ) 

+2 

p ∑ 

i =1 

t i ∫ 
τ= t i +1 

e 2 k d ( τ ) 
[

˜ � i 
2 ( τ ) 

]
 
d �i 

2 (t) ̃  � i 
2 ( τ ) d τ

The assumption given in the theorem statement ensured the

negativeness of W ( h, P, Q, R, α) with respect to the depen-

dent parameters and using the adjustment laws described in

(6) and (7) yields to the following differential inclusion ˙ V (t) ≤
−αe 2 k d t �2 ( t ) P + e 2 k d t β . If we consider the set defined by 

�( t ) = 

{
�(t) | β < α�2 ( t ) P 

}
Then, if �( t ) ∈ �, 

˙ 
 (t) ≤ 0 (12)

It is straightforward to prove that there exist positive definite ma-

trices N 1 , N 2, i , N 3, i and N 4, i ( i = 1 , . . . , p) such that 

d 2 

dt 2 
V (t) ≤ e 2 k d �2 N 1 + 

p ∑ 

i =1 

e 2 k d t i ˜ ψ 


 
2 ( t i ) N 2 ,i 

˜ ψ 


 
2 ( t i ) 

+ 

p ∑ 

i =1 

e 2 k d t i +1 ˜ ψ 


 
2 ( t i +1 ) N 3 ,i 

˜ ψ 


 
2 ( t i +1 ) 

+ 

p ∑ 

i =1 

t i ∫ 
τ= t i +1 

e 2 k d ˜ ψ 


 
2 ( τ ) N 4 ,i 

˜ ψ 


 
2 ( τ ) dτ

In view of (12) , the right-hand side of the last differential inclu-

sion is bounded, then by the Barbalat’s Lemma, the function V ( t ) is

absolute continuous, and finally one got 

lim 

→∞ 

e 2 k d t 
(
α�2 ( t ) P − β

)
= 0 (13)

Firstly, the result presented in (13) implies that α�2 ( t ) P − β =
o 
(
e 2 k d t 

)
, then �2 ( t ) approaches its ultimately bound βα−1 P −1 

faster than e −2 k d t . What is known with this result is that training

of TDNN is attained not only with a predefined quality value but

also how fast this value is reached. �

4. Database evaluated by the classifier 

The database considered in this study was taken from

( of Freiburg, 2012 ). The entire data collection contains 500 EEG

recordings divided in 5 different clinical classifications. EEG data

were acquired using a Neurofile NT digital video EEG system with

128 channels, 173.61 Hz sampling rate, and a 16 bit analogue-to-

digital converter. Notch or band pass filters have not been applied

during the recording of the signals. So, each signal is considered

to be raw, that is, without any pretreatment. The database is di-

vided in 5 classes. Each class contains 100 samples. The database

of EEG signals considered in this study has samples of five differ-

ent classes but with only one acquisition channel. Therefore, only

the information of one single channel already selected was used to

perform the classification analysis. 

Sets Z and O are signals recorded from the EEG surface with

volunteers relaxed in and awaken mode with eyes open and closed

respectively. Set N was taken from the hippocampal formation of

the opposite hemisphere of the brain, set F was recorded from

the epileptogenic zone, while set S only contained seizure activ-

ity ( Polat & Günes, 2007 ). For the purpose of this article, only sig-

nals included in classes S and Z were considered. Nevertheless, the

same pattern classification methodology can be easily extended to

include all the signals in the 5 classes previously described as well

as more acquisition channels. 
. Numerical evaluations of the TDNN based classifier 

The training as well as the validation processes were evalu-

ted with 1,2,..., 15 delays. This part of the study was conducted

o evaluate the relation between the classification accuracy with

espect to the number of delays. The number of columns for both

 

i 
1 

and W 

i 
2 

was 1. This selection was also done in agreement of the

ell-known problem of over-fitting exhibited by different NN. This

roblem occurs when the training error in each trial is driven to

ero or to a very small value. Nevertheless, during the validation

rocess, this error is large enough that yields to obtain low per-

entages of successful classification results. This condition occurs

hen the NN memorized the training dataset, but it has not gain

he ability to generalize the relationship between delayed inputs

nd output. Therefore, to reduce as much as possible the number

f weights in the TDNN yields to reduce the effect of overfitting on

he classification process. Each numerical evaluation in the train-

ng process took 7 minutes in average. All the numerical experi-

ents were evaluated in a Dual Xeon E5-2637v3 3.5 GHz, 15 MB

ache, 9.60 QPI (Four-Core) 192 GB DDR4-2133 REG ECC (12–16 GB

IMMS) 2 x NVIDIA Quadro K2200 4 GB. 

Fig. 3 illustrates how the proposed TDNN works. First, the sig-

al is windowed in same size portions, then those windows are

mployed as inputs for the TDNN. The windowed information from

he signal represent the effect of delayed input. The inputs are or-

anized as follow; present time window, 1 time-delay datum, 2

ime-delay datum, up to n time-delay datum (it is expected that

ncreasing the number of delays shall improve the classification ca-

abilities of the TDNN). The purpose of these windowing is to fed

he TDNN with more information related to the characteristics of

ach class. 

The sampling frequency of EEG signals used in the classifier

tudy was 173.61 Hz. So, in the case of one delay, the total num-

er of samples was 2 (without delay and one delay) and the time

as 5.76 ms. On the other hand, when the number of delay was

5 (the biggest one), the signal time injected into the classifier was

6.40 ms. The complete evaluation of training and testing used the

ntire signal long (23.6 s). This characteristic was kept constant in

ll the studies. 

.1. Training process 

The number of delays was varied from 1 to 15. We used 12

omponents for the internal weights W d 1 
while we used 7 compo-

ents for each weight associated to the delayed input. Therefore,

 total number of weights components given by 12 + ( p + 1) ∗7 was

sed where p is the number of delays. Then, the classifier proposed

n this part of the work was evaluated with the following parame-
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1  
ers 

A = −2 . 6 W d 1 ( 0 ) = 2 . 0 ∗ ones (12) m = n = 1 

 d 2 ( 0 ) = 7 . 5 ∗ ones (7) W 

i 
d 2 

( 0 ) = 7 . 5 ∗ ones (7) i = 1 , . . . , 7 

hese parameters were obtained after several numerical evalua-

ions. Today, there is not a formal manner to select these param-

ters in a different form. Notice that the dynamic nature of the

DNN based classifier reduces the necessity of having hidden lay-

rs in its structure. However, the inclusion of hidden layers in the

lassifier structure is still a matter of further investigation. In gen-

ral, if the number of EEG channels is 1, the number of rows for

oth W d 1 
and W d 2 

can be freely adjusted. Nevertheless, the size of

he signal window (number of delays) used in the classifier defines

he number of weight W 

i 
d 2 

. 

Fig. 4 a shows the approximation performance of the CNN when

erforming the training for a specific EEG signal taken from the

lass S. The sigmoid function used to represent the class was 

 l (t) = 

3 

1 + e −2 t 
(14) 

The convergence between both signals is an indirect demon-

tration of the training efficiency generated by the learning laws

roposed for the pattern classifier based on CNN. Fig. 4 b shows an

mplified view of the tracking provided by the TDNN and the sig-

oid function used to define signals included in the class Z. Notice

hat 4 different waveforms appear in the same plot. These signals

orrespond to the TDNN trajectories when different number of de-

ays were considered in its structure. Notice that when the number

f delays is five, the approximation of the sigmoid function is not

s good as in the case when the number of delays increased up

o 10 or 15. However, there is no evident enhance when the num-

er of delays is above 10. This condition can introduce an indirect

ethod to define the size of the window needed to obtain an accu-

ate pattern classification quality. Notice that when the number of

elays is referred, the length of each window is what is explained.

ll the windows were evaluated independently and they are not

verlapped. Therefore, there is zero samples overlapped. 

In order to evaluate the training quality, the least mean square

rror (LMSE) was calculated with respect to the number of delays

onsidered in the input signal. This error served to evaluate the
egree of over-fitting during the training process. Fig. 5 depicts the

elationship between the LMSE and the number of delays included

n the EEG input signals. LMSE was calculated for both, the signals

ncluded in the class S as well as the ones included in the class

. This value was the result of averaging the LMSE for all the 100

ignals included in each class. 

emark 1. Authors have reviewed the existing literature regarding

he estimation of window size. There are some results that have

xploited the spectral information of the signal or the nature of

he electrophysiological signal ( Roshan et al., 2012; Sierra-Marcos

t al., 2015 ). These results can be applied to the classifier proposed

n this study. Nevertheless, this aspect was not discussed in detail

n our article because we were trying to analyze the dependence of

raining accuracy with respect to the number of delays. This aspect

as been much less studied and to the authors’ knowledge, and

oday there is not a formal way to determine the number of delays

-priori if a predefined accuracy error is expected. 

.2. Validation procedure 

Validation results for database are divided in two studies: the

rst uses the well-known training-generalization-validation, the 

econd evaluation used the k -cross fold training with k = 5.

he results of the classification process obtained for the training-

eneralization-validation process when the number of delays was 5

re contained in Table 1 . This method achieved a 94.88% of correct

lassification for all the signals included in the selected database.

his result is in the same range of those reported in similar studies

using the same database to evaluate different classifiers) where

lso signals from the same two classes (S and Z) were considered. 

From the 5-fold cross validation applied to the database I, a

otal classification accuracy of 100.0% ( Table 2 ). For this part of

he process, the total set of signals in the database was employed.

otice that even when the final classification percentage is high,

here is still the necessity of increasing the number of classes that

hould be included in the study. 

Table 3 contains the information of the training-generalization-

alidation process when the number of delays was increased up to

0. One may notice that classification accuracy also increased from
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Fig. 5. Effect of number of delays on the training process. 

Table 1 

Results from the generalization valida- 

tion method for 5 delays. 

S Z 

Samples 100 100 

Training 100 % 100 % 

Generalization 82 % 73 % 

Independent test 87 % 81 % 

Table 2 

Results from the 5-fold cross vali- 

dation method for 5 delays. 

S Z 

Samples 100 100 

1 °S. CfA 100 .0% 100 .0% 

2 °S. CfA 100 .0% 100 .0% 

3 °S. CfA 100 .0% 100 .0% 

4 °S. CfA 100 .0% 100 .0% 

5 °S. CfA 100 .0% 100 .0% 

Total CfA 100 .0% 100 .0% 

CfA: Classification accuracy, S: Seg- 

ment. 

 

 

 

 

 

 

 

 

 

Table 3 

Results from the generalization valida- 

tion method for 10 delays. 

S Z 

Samples 100 100 

Training 100 % 100 % 

Generalization 91 % 86 % 

Independent test 88 % 83 % 

Table 4 

Results from the 5-fold cross vali- 

dation method for 10 delays. 

S Z 

Samples 100 100 

1 °S. CfA 100 .0% 100 .0% 

2 °S. CfA 100 .0% 100 .0% 

3 °S. CfA 100 .0% 100 .0% 

4 °S. CfA 100 .0% 100 .0% 

5 °S. CfA 100 .0% 100 .0% 

Total CfA 100 .0% 100 .0% 

CfA: Classification Accuracy, S: Seg- 

ment. 

f  

t

 

l  

a  

l

5

 

p  
82.0% to 93.0% in the case of the signals contained in the class S

while a similar increment was observed for the signals included

in the class Z (73.0% to 86.0%). These results confirm the impact

of increasing the number of delays in the input signal. Notice that

a more expensive calculus must be done because the number of

weights in the TDNN is also doubled. Nevertheless, the improve-

ment in the pattern classification quality justified this more com-

plex TDNN design. 

The results of the 5-fold cross validation applied to the database

I showed a total classification accuracy of 100.0% ( Table 4 ). There-
ore, this evaluation test only confirmed the results obtained when

he number of delays was 5. 

Some additional tests were done with a larger number of de-

ays considered in the input signal. Nevertheless, the classification

ccuracy was not increased at all when the number of delays was

arger than 10. 

.3. Classification results for borderline signals 

In order to evaluate the classification capacities of the algorithm

roposed in this study, some evaluation tests were proposed. A set
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Table 5 

NPV, PPV, TPR and SPC for 1,5,10 and15 delays. 

Delays 1 5 10 15 

class S Z S Z S Z S Z 

NPV 0 .9010 0 .875 0 .92307 0 .8888 0 .9368 0 .9578 0 .9473 0 .9578 

PPV 0 .0989 0 .125 0 .0769 0 .1111 0 .0631 0 .0652 0 .0526 0 .0421 

TPR 0 .9213 0 .9058 0 .9230 0 .9302 0 .9569 0 .9450 0 .9574 0 .9680 

SPC 0 .8181 0 .7333 0 .7777 0 .7142 0 .8571 0 .6666 0 .8333 0 .6666 

Table 6 

Comparisson between different classification techniques applied to EEG singel trail signals. 

Researches Dataset CfA Validation method 

( Srinivasan, Eswaran, & Sriraam, 2005 ) Z,S 99 .6% NC 

( Kannathala, Rajendra-Acharyab, Limb, & Sadasivana, 2005 ) Z,S 92 .22% NC 

( Kannathala, Choob, Rajendra-Acharyab, & Sadasivana, 2005 ) Z,S ∼ 90% NC 

( Polat & Günes, 2007 ) Z,S 98 .72% k -fold 

( Subasi, Akin, Kiymik, & Erogul, 2005 ) Z,S 95% k -fold 

( Ocak, 2009 ) Z,S 96 .65% NC 

This study Z,S 97 .32% k -fold, gen. 
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s  
f 200 signals was prepared artificially accordingly to the follow-

ng procedure: consider a first signal S i from the class S and a

econd one S j from a class Z , the hybrid signal S ij was generated

s the convex combination of S i j = λS i + (1 − λS j ) . Then, these sig-

als were tested on the parallel arrangement of trained TDNN. In

articular, for this particular analysis, λ = 0 . 8 meaning that 80% of

 signal belong to a class S was combined with a 20% of a sin-

le belonging a class Z . A second round of analysis considered the

nalysis of borderline signals using λ = 0 . 7 . After the total evalu-

tion of classification process, the TDNN based classifier achieved

 95% of correct classification for database I. This result shows the

etectability capacity of the classifier proposed in this study. 

.4. Confusion matrix evaluation 

In order to detail the classification capacities of the proposed

dentifier, the analysis of Negative Prediction Value (NPV), Posi-

ive Prediction Value (PPV), True Positive Rate (TPR) and Specificity

SPC). These values are calculated according to the following equa-

ions ( Fawcett, 2005 ): 

PV = 

TruePositives 

( TruePositives + TrueNegatives ) 

PPV = 

TrueNegatives 

( TrueNegatives + TruePositives ) 

TPR = 

TruePositives 

( TruePositives + FalseNegative ) 

PC = 

TrueNegatives 

( TrueNegatives + FalsePositive ) 

Table 5 depicts the results obtained after the evaluation of the

arameters included in the confusion matrix. In agreement to the

ccuracy results as well as the predictive analysis (with all results

bove 90%), the classifier proposed in this study seems to be a re-

iable method to classify certain characteristics in EEG signals. 

Some examples of different classification techniques applied to

EG signals are shown in the Table 6 . 

. Conclusions 

In this paper, an EEG signal classifier was developed based on

 class of TDNN with delays appearing in the input signal. This

haracteristic was proposed to take into account the concept of

ignal windowing. The capability of a the TDNN to be employed
s a EEG signal pattern classifier was tested with the information

ollected in a traditional databases. The training process (based on

he method to adjust the weights in the TDNN) was also proposed

ased on the technique of Lyapunov stability analysis. The train-

ng results as well as the validation percentages were reported and

valuated for signals belonging to a couple of classes included in

atabase. In order to evaluate the effectiveness of the classifier

roposed in this study, the classification percentages were com-

ared to the results achieved by some other classifiers based on

N that have used similar information. Even though the results

eported by others may be higher in their total correct classifica-

ion accuracy, they are not working with the entire set of signals

onsidered in this study database. Moreover, the method presented

ere used the raw EEG signal without considering the application

f any preliminary signal treatment. Even more, accordingly to the

lassification results obtained in this study, this kind of classifier

an be extended to some other problems where the raw signal can

e more informative as is instead of making several steps of pre-

reatment. In general, the application of this kind of classifier only

equires the selection of training time T and to perform the ex-

austive supervised training. This is an advantage of the classifier

tructure proposed in this study because non-particular pretreat-

ent should be designed. 

Then, the classifier based on continuous delayed neural net-

orks can classify electrophysiological signal on-line by consider-

ng the presence of delayed input information. This characteristic

an be considered as a novel contribution because today, the clas-

ifiers based on neural networks and working on-line uses a dif-

erent scheme where the delayed information is used as a vector

nput with the same type of learning laws. This study considers a

ifferent option where the learning laws were specially designed to

onsider the specific impact of each delay on the classifier perfor-

ance. On the other hand, the classification scheme based on con-

inuous delayed neural networks uses a class of associative mem-

ry where a parallel neural network with fixed weights was pro-

osed to obtain the class where the EEG signal belongs. 

On our point of view, the more important issue that must be

mproved in this classifier is the time needed to perform the train-

ng process. Because the numerical implementation of integral op-

ration usually takes long periods of time, the training period of

ime can take several hours. This condition is not longer occurring

hen the testing phase is evaluated. One additional aspect to con-

ider is the effect of increasing the number of delays. If this num-
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ber increases, then the simulation time does not increase propor-

tionally. This increment is polynomial. 

We believe that the following are potential future research op-

portunities for the type of classifier considered in this study: 

• Finite-time convergence of learning laws in the classifier would

provide a higher degree of robustness against noises in the sig-

nal. 
• Deep learning methods such as extreme learning can be con-

sidered as a suitable option to develop new and more powerful

variations of the classifier proposed in this study. 
• Classifiers based on EEG information as well as visual informa-

tion (for example) can be used to consider the application of

the classifier proposed in this study in the analysis of evoked

potentials. 
• The analysis of accuracy percentage depending on the type of

activation function should be explored in order to determine

the best approximation basis of classifier developed in this

study. 
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