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This study documents the type of proof schemes that high school teachers developed and used 

in problem solving scenarios that involve the use of dynamic software (Cabri-Geometry). 

Research questions that helped organize and structure the development of the study include: 

(i) To what extent does the high school teachers’ process shown to pose questions or 

formulate problems influence their ways to validate mathematical relations or conjectures? 

(ii) What types of problem solving strategies do the participants use to identify and support 

conjectures that emerge as a result of constructing and examining dynamic problem 

representations? Results indicate that the subjects’ use of dynamic software to represent 

mathematical objects and situations dynamically not only favors their ways to formulate 

conjectures; but also the schemes’ construction to support and validate those conjectures. 

How does a mathematical relation emerge? What does it mean to prove or demonstrate a 

particular mathematical relation? What types of arguments are important to validate a 

mathematical conjecture? How visual, empirical, geometric, and analytic arguments are used 

to validate mathematical relations? To what extent do the systematic use of dynamic software 

favor or enhance a particular ways of reasoning and thinking about proofs’ construction? The 

discussion of these types of questions sheds light on the complexity involved during the 

subject’s construction of mathematical arguments and the relevance of problem solving 

approaches that promote the teachers and students’ use of technology to foster both the 

formulation of relations and the search for arguments to support mathematical conjectures. 

Those problem-solving experiences involve the subject’s direct participation in formulation 

of questions or problem posing activities, the development of problems solving strategies and 

the use of different artifacts, including computational or digital tools, to represent and explore 
mathematical ideas or problems. 

It is common to associate the term “mathematical proof” to the development and 
presentation of deductive arguments, based on a set of propositions, to support results or 

mathematical relations; however, the process of proving involves more than only the use of 
logic or formal arguments; it includes for the subject to be convince himself/herself initially 

and to convince others about the viability and validity of the conjecture or mathematical 
relation to be proved (Harel & Sowder, 1998). What does it mean for the subject to be 

convinced about the validity of a particular mathematical relation? We argue that it means the 

opportunity for the subject to explore conjectures or mathematical relations in terms of visual 

and empirical explications that often rely on measuring figures or attributes (areas, 

perimeters, lengths, etc.) and moving objects and observing patterns of particular behaviors. 

Since the use of technology seems to facility the representation and exploration of 

mathematical situations, then it is important to investigate the extent to which the use of 

particular tools helps teachers and students develop ways of reasoning that favor the use of 

distinct arguments to validate and prove mathematical conjectures or results. 

Thus, in this study, we are interested in documenting and analyzing the process exhibited 

by high school teachers to construct dynamic representations of situations that lead them to 
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formulate and examine conjectures and ways to support them. The research questions used to 

guide and structure the development of the study were: 

1. To what extent does the high school teachers’ processes shown to pose or 

formulate questions influence their ways to validate mathematical relations or 

conjectures? Here, there is interest to document how the participants’ construction 

of dynamic representations of situations helped them to initially pose questions 

that eventually led them to identify and explore mathematical conjectures. 
Similarly, we focused on analyzing ways in which the participants look for 

arguments to support those conjectures. In particular, we identify and discuss the 
proof schemes that emerged through the participants’ use of dynamic software. 

2. What types of problem solving strategies do the participants use to identify and 
support conjectures that emerge as a result of constructing and examining 

dynamic problem representations? Here, we focused on documenting the types of 
problem solving strategies (examining particular cases, looking for patterns, using 

coordinate system, and finding objects’ loci) used to solve problems and construct 

arguments and proofs. 

Conceptual Framework 

An important feature in the process of learning mathematics is the construction of a line 

of thinking in which the learners have the opportunity of using their previous knowledge to 

identify mathematical relations and to provide arguments to support results. Harel and 

Sowder (1998) distinguish two related aspects that are relevant during the subjects’ 

construction of proofs or arguments to justify conjectures: The subject self-convincement 

stage in which he/she is convinced that the conjecture is valid and make sense to him/her; and 

the need to persuade others about the validity of that conjecture. That is, one is an individual 

recognition and the other a community acceptance. Harel and Sowder (1998) also identify 

seven types of sub-categories of proof schemes: (a) ritual proof scheme in which the subject’s 

convincement is based on accepting the form rather than the content or argument; (b) 
authoritarian proof scheme in which the subject’s convincement is based on arguments or 

affirmations presented by an authority (teacher, textbook, or expert); (c) symbolic proof 
scheme in which conviction is based on symbolic manipulations without explicit explanation 

of the meaning attached to those manipulations; (d) perceptual proof scheme in which 
conviction is based on using rudimentary mental images that lack actions to anticipate results; 

(e) inductive proof scheme in which conviction is achieved through the use of quantitative 
evaluations; (f) transformational proof scheme in which the subject relies on goal-oriented 

operations on objects to anticipated results; and (g) axiomatic proof scheme which is also a 

transformational proof that relies on the use of axioms and established definitions. 

Thus, each proof scheme becomes relevant to explain the cognitive process embedded in 

both the subject’s own convincement about the validity of mathematical relations and the 

subject process to convince others about the pertinence, meaning, and proof of that 

conjecture. 

We also argue that the cognitive process involved during the construction of 

mathematical arguments to support relations can be traced or explained in terms of the 

subject’s ways to formulate and pursue significant questions (Santos-Trigo, et al., in press). 

Thus, problem solving approaches that encourage students/learners to formulate, examine, 

and support conjectures might help them value the use of distinct types of arguments to 

justify results and conjectures. Santos-Trigo (2007) illustrates ways in which high school 

teachers and students can transform typical textbook problems into nonroutine problems 
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when they construct various representations (including dynamic representations) of those 

problems and look for distinct ways to approach them. In particular, the use of computational 

tools (dynamic software for example) seems to offer proper conditions for the learners to 

pose and examine questions that lead them to formulate and later support conjectures. In this 

context, we are interested in documenting the extent to which the categories identified by 

Harel and Sowder (1998) can be used to explain the subjects’ construction of arguments 

within a problem solving environment that promote the use of dynamic software. 

Participants, Design, and Procedures 

Seven high school teachers participated in a weekly 1.5 hr problem solving sessions 
during one semester. However, we focus on the work shown by three of those participants 

because their approaches to the tasks are representative of the group’s work. The aim of the 
sessions was to work on a series of tasks that involves the construction of geometric 

configuration, using Cabri-Geometry software to identify and support mathematical relations 
or conjectures. In general, the pedagogic approach that consistently characterized the 

development of the sessions included: 

1. The responsible or coordinator of the sessions introduced a task to the participants 

and explains to them ways to work and report their work.  

2. The participants worked on each problem individually and later they had 

opportunity to present and examine their work within the group. 

3. At the end, each participant handed in a report that included electronic files and 

written comments and observations that appeared during their individual and 

collective participation. 

To analyze what the three participants showed during their problem solving approaches, 

we focus on those tasks that involve the construction of geometric configurations that were 

used to identify and discuss mathematical relations. The initial tasks and instructions that the 

participants received to construct those dynamic configurations included: 

1. Given a line and a point that does not belong to that line, construct an isosceles 
triangle with one side lying on the line and the third vertex the given point that is 

not on that line. 
2. Draw a square given one of its vertices, and the middle point of one of the side of 

the square that is not adjacent to the given vertex. 
3. Draw a tangent circle to two given circles. 

Data used to analyze the participants’ approaches to the tasks come from electronic files, 
written reports, and field notes taken by the sessions’ coordinator during the problem 

sessions. The first goal was to analyze the extent to which the proof schemes identified by 

Harel and Sowder (1998) consistently appear in the participants’ performances. In addition, 

the identification of problem solving episodes (Schoenfeld, 1985) became important to 

identify the type of strategies used to identify, construct, and support mathematical relations. 

Presentation of Results and Discussion 

There is evidence that the use of the software became important for the participants to 

initially identify key elements which they used to construct a dynamic representation of the 

tasks. Thus, dragging particular points or objects within the representation was an important 

activity that helped them detect invariants or conjectures. For example, Ann approached the 

first task (isosceles triangle) by drawing a line l and point C out of that line. She chose point 

P on line l and drew a circle with center at point C and radius the segment CP. Thus the 

triangle PCQ is isosceles by construction. In this case, Ann observed that she could draw a 
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family of isosceles triangles when point P is moved along the line l and asked at what 

position of P the triangle PCQ becomes equilateral? (Task 1.1) (Figure1a). Hugh drew line l 

and point Q on that line and a circle with center at point Q and radius QC (C is not on line l). 

Then he drew the perpendicular bisector of segment QC, located point S and asked: What is 

the locus of the point S when point Q is moved along the line? (Figure1b). He observed that 

the locus of point S was a line and verified this assertion by selecting two points on the locus 

and drawing a line passing by those points and observed that it overlaps the locus. 

l
C

P

Q

P'

Q'

 

Figure 1a: At what position of point 

P, triangle PCQ becomes equilateral? 

l

l1

Q

C

S

R

 

Figure 1b. What is the locus of the point 

S when point Q is moved along line l? 

 
Hugh noticed that the locus intersects line l at point 

R (Figure 1b) and then he drew segment CR and a 
circle with center at point C and radius CR, and located 

point T to construct the equilateral triangle. He used 

the software to measure the angles in order to verify 

the measure of each interior angle was 60 degrees 

(Figure 2). 

What types of proof schemes (following Harel and 

Sowder, 1998) did the participants utilize to convince 

initially themselves and later to convince others about 

the pertinence and validity of their results? Table 1 

shows a summary of the type of proof schemes used by 

the three participants. 

l

60,0 °

60,0 °

60,0 °

C

R

T

 

Figure 2. Equilateral triangle. 

 

 Task 

Participant 1 1.1 2 3 

Ann d, g d N d, f 

Mary e, g e, g d, e d 

Hugh e, g d, e d, f d 
Type of proof scheme: (a) ritual, (b) authoritarian, (c) symbolic (d) perceptual, 

(e) inductive, (f) transformational, (g) axiomatic, (N) problem not solved. 

Table1: Proof schemes used by the participants 

Mary constructed an equilateral triangle by drawing a line L, and a perpendicular to L 

passing by point C. This perpendicular line cuts line L at M. Then se drew line l2 and points 
D1, D2 and D3 such as MD1 = D1D2 = D2D3. Then drew segment CD3 and parallel lines to this 

segment passing by points D2 and D1. The latter intersects line MC at T. She drew a circle 



577 

 

  

Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29
th

 annual meeting of the 

North American Chapter of the International Group for the Psychology of Mathematics 

Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno. 

 

with center point T and radius TC. This circle intersects line L at points A and B. Here she 

stated that triangle ABC was equilateral. How did Mary convince herself that the triangle she 

had constructed was equilateral? Mary, as the other participants, used the software initially to 

measure the angles in order to verify if they measured each 60 degrees (Figure 3a). When the 

participants exchanged ideas and discussed their approaches with the whole group, they 

recognized the importance of providing other type of evidence to show that, in this case that 

the triangle was equilateral. For example, Mary at the end of the session in her report wrote: 
CM is perpendicular to L (by construction) and T divides segment CM into a ration 2:1. Let h 

be equal to TM, then CT = AT = BT = 2h, this is because CT, AT and BT are radii of the 

same circle (Figure 3b). Triangle AMT is right triangle, therefore, MA = 3h ; similarly CA 

= 2 3h , and CB = 2 3h . As a consequence triangle ABC is equilateral. A key idea used in 
Mary’s report is the identification of point T (center of the circle). Her construction was 

based on assuming the existence of the equilateral triangle and to identify its relevant 

properties. That is, she used the properties to guide her construction.  

L

l1

l2

l3

l4

60,0 °

60,0 ° 60,0 °

C

M

D1

D2

D3

T

B A

 

Figure 3a. Constructing an equilateral 

triangle. 
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Figure 3b. Providing an argument to 

validate the construction. 

Hugh observed that the locus of the perpendicular bisector when point Q was moved 

along line l (Figure 1b) seemed to be a parabola. His first strategy to convince himself that 

the locus was a parabola was to use the software command (conic) to visualize if five points 

on that locus determined that conic (parabola) (Figure 4a). At this stage, he was convinced 

that the locus was a parabola; but he was aware that it was important to think of other types 

of arguments. Later, he chose point P on the locus and drew a perpendicular line to l that 

passes through point P. This perpendicular line intersects line l at point R. Then, with the use 

of the software he measured distances PR and PC and observed that for different position of 
point P the distances were the same (Figure 4b). Here, Hugh assumed that line l and point C 

were the directrix and focus of the parabola respectively and used the software to verify the 
definition of this conic. 
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Figure 4a. Perceptual scheme to 

validate the existence of a parabola. 
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Figure 4b. Empirical validation of the 

definition of a parabola. 

The use of the software also allowed the participants to display transformational proof 
schemes. For example, Ann approached the task that involved the construction of a tangent 

circle to two given circles by initially focusing on a partial solution. That is, given the circles 

with centers at point A and B respectively, she situated points R and Q on each circle. Then 

she drew lines AR and BQ and observed that for certain positions of these points the lines get 

intersected at point C. She drew a circle with center at point C and radius CR. This circle is 

tangent to circle with center at point A (Figure 5a) (partial solution). Ann noticed visually 

that when point R is moved along the circle there was a point on circle with center B at which 

the circle with center C is tangent to both circles. To justify this construction, Ann argued: 

For certain positions of point R the circle with center C does not intersect the circle with 

center B while for other positions of point R the circle intersect that circle at two points 

(Figure 5b), then there should be a position for R in which the circle intersects the other at 

only one point. That is, there must be a position for point R in which the circle with center at 
C is also tangent to the circle with center at point B. 

A
B

R Q

C

 

Figure 5a. A partial solution to the 

problem. 

A
B

R Q

C

R'

C'

 

Figure 5b. Dragging point R around 

circle with center A to find the solution. 

Another example of the appearance of a transformational scheme is shown in Hugh’s 

approach to the construction of the square. He constructed a family of rectangles holding the 
condition that P was one vertex and Q the middle point of the opposite side (Figure 6a). 

When point N is move along the circle, he observed that one element of that family of 

rectangles represented the solution of the problem. To justify his method to identify the 

square, Hugh argued that when point N is moved along the circle, the family of the generated 

rectangles holds initially that the length of segment PN is less than the length of segment PR 
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(Figure 6a); however, for certain positions of point N it appears that the length of segment PN 

is greater than the length of segment PR (Figure 6b). Therefore, there should be the case in 

which both lengths are equals. 

P

Q

M

N

N'

R

 

Figure 6a. M is the middle point of 

segment PQ and N’ symmetric to N with 

respect to Q. 

P

Q

M

N

N'

R

 

Figure 6b. The length of segment PN is 

greater than the length of segment PR. 

Final Remarks 

There is evidence that the use of the software helped the participants construct dynamic 

representations of mathematical objects that eventually became a source or departure point to 
formulate questions and problems. What relevant features characterize the participants’ 

process to construct a dynamic representation of the situation? It was observed that the 
participants started to analyze the situation in terms of geometric properties and translated 

this information into the construction of objects that eventually could be moved and observed 
components’ behaviors. For example, when Hugh situated point Q on a line and point S be 

part of a circle, he was aware that when moving point Q on line l, it was important to follow 

the path left by point S and the perpendicular bisector of segment CQ. Indeed, tracing those 

loci led them to construct the equilateral triangle and to identify the locus of the 

perpendicular bisector as a parabola. At this stage, Hugh directed his attention to finding 

distinct types of arguments to support his finding. Again, the use of the tool was relevant to 

explore a quantitative approach (measuring distances and angles) to initially verify the 

properties of those loci.  

Although some of the proof schemes identified by Harel and Sowder (1998) seemed to 

appear in the participants’ problem solving approaches, there is evidence that with the use of 

the tool, the participants can move from visual, empirical and perceptual approaches to more 

formal or deductive schemes. In addition, the participants’ process of posing problems helped 

them to initially be convinced that the problem or question and associated conjectures were 

relevant and needed to be explored or supported. As a consequence, it was natural to think of 
different ways to support their responses. 

Finally, the use of the tool seems to enhance problem solving strategies that include (i) 
assuming the problem solved and then to identify properties to construct a dynamic 

representation; (ii) representing and solving the problem partially and then examining the 
representation by moving some elements within the representation to find the complete 

solution; and (iii) using the tool “locus” to observe the behavior of some elements of the 
representation to solve the problem or to formulate other questions or problems. 
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